Protected areas have a mixed impact on waterbirds, but management helps

  • High Ambition Coalition for Nature and People. 50 Countries Announce Bold Commitment to Protect at Least 30% of the World’s Land and Ocean by 2030 (Campaign for Nature, 2021).

  • Waldron A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020).

  • Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23223 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Nelson, A. & Chomitz, K. M. Protected Area Effectiveness in Reducing Tropical Deforestation (The World Bank, 2009).

  • Scharlemann, J. P. W. et al. Securing tropical forest carbon: the contribution of protected areas to REDD. Oryx 44, 352–357 (2010).

    Article 

    Google Scholar
     

  • Feng, Y. et al. Assessing the effectiveness of global protected areas based on the difference in differences model. Ecol. Indic. 130, 108078 (2021).

    Article 

    Google Scholar
     

  • Laurance, W. F. et al. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 144, 56–67 (2011).

    Article 

    Google Scholar
     

  • Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Terraube, J., Van doninck, J., Helle, P. & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kleijn, D., Cherkaoui, I., Goedhart, P. W., van der Hout, J. & Lammertsma, D. Waterbirds increase more rapidly in Ramsar-designated wetlands than in unprotected wetlands. J. Appl. Ecol. 51, 289–298 (2014).

    Article 

    Google Scholar
     

  • Reyes-Arriagada, R. et al. Population trends of a mixed-species colony of Humboldt and Magellanic Penguins in Southern Chile after establishing a protected area. Avian Conserv. Ecol. 8, 13 (2013).


    Google Scholar
     

  • Bukart, K. Motion 101 passes at IUCN, calls for protecting 50% of Earth’s lands and seas. One Earth https://www.oneearth.org/motion-101-passes-at-iucn-calls-for-protecting-50-of-earths-lands-and-seas/ (2021).

  • Protected Planet Report 2020 (UNEP-WCMC and IUCN, 2021).

  • Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

  • Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat, Ecol. Evol. 2, 759–762 (2018).

    Article 

    Google Scholar
     

  • Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M. & Wilson, K. A. Conservation planning in a changing world. Trends Ecol. Evol. 22, 583–592 (2007).

    Article 

    Google Scholar
     

  • Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Article 

    Google Scholar
     

  • Rodrigues, A. S. L. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Redford, K. H. The empty forest. BioScience 42, 412–422 (1992).

    Article 

    Google Scholar
     

  • Ferraro, P. J. Counterfactual thinking and impact evaluation in environmental policy. N. Direct. Eval. 2009, 75–84 (2009).

    Article 

    Google Scholar
     

  • Adams, V. M., Barnes, M. & Pressey, R. L. Shortfalls in conservation evidence: moving from ecological effects of interventions to policy evaluation. One Earth 1, 62–75 (2019).

    Article 

    Google Scholar
     

  • Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).

    Article 

    Google Scholar
     

  • Kingsford, R. T., Roshier, D. A. & Porter, J. L. Australian waterbirds time and space travellers in dynamic desert landscapes. Mar. Freshw. Res. 61, 875–884 (2010).

    CAS 
    Article 

    Google Scholar
     

  • The Ramsar Convention Secretariat. Managing Ramsar Sites. ramsar.org https://www.ramsar.org/sites-countries/managing-ramsar-sites (2014).

  • European Commission. The Birds Directive. https://ec.europa.eu/environment/nature/legislation/birdsdirective/index_en.htm (accessed 3 April 2022).

  • Zhang, W., Sheldon, B. C., Grenyer, R. & Gaston, K. J. Habitat change and biased sampling influence estimation of diversity trends. Curr. Biol. 31, 3656–3662.e3 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Bruner, A. G., Gullison, R. E., Rice, R. E. & da Fonseca, G. A. B. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125–128 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Carranza, T., Balmford, A., Kapos, V. & Manica, A. Protected area effectiveness in reducing conversion in a rapidly vanishing ecosystem: the Brazilian Cerrado. Conserv. Lett. 7, 216–223 (2014).

    Article 

    Google Scholar
     

  • Rabinowitz, D. In The Biological Aspects of Rare Plant Conservation (ed. Synge, H.) 205–217 (John Wiley & Sons, 1981).

  • Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Hettiarachchi, M., Morrison, T. H. & McAlpine, C. Forty-three years of Ramsar and urban wetlands. Glob. Environ. Change 32, 57–66 (2015).

    Article 

    Google Scholar
     

  • Munishi, P., Chuwa, J., Kilungu, H., Moe, S. & Temu, R. Management effectiveness and conservation initiatives in the Kilombero Valley Flood Plains Ramsar Site, Tanzania. Tanzania J. For. Nat. Conserv. 81, 1–10 (2012).


    Google Scholar
     

  • Fahrig, L. Why do several small patches hold more species than few large patches? Glob. Ecol. Biogeogr. 29, 615–628 (2020).

    Article 

    Google Scholar
     

  • Newmark, W. D. Extinction of mammal populations in western North American National Parks. Conserv. Biol. 9, 512–526 (1995).

    Article 

    Google Scholar
     

  • Mascia, M. B. & Pailler, S. Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv. Lett. 4, 9–20 (2011).

    Article 

    Google Scholar
     

  • Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Glob. Ecol. Conserv. 10, 32–42 (2017).

    Article 

    Google Scholar
     

  • Wetlands International. Asian Waterbird Census. https://south-asia.wetlands.org/our-approach/healthy-wetland-nature/asian-waterbird-census/ (accessed 3 April 2022).

  • Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).

    Article 

    Google Scholar
     

  • Kingsford, R. T., Bino, G. & Porter, J. L. Continental impacts of water development on waterbirds, contrasting two Australian river basins: global implications for sustainable water use. Glob. Change Biol. 23, 4958–4969 (2017).

    Article 

    Google Scholar
     

  • Jia, Q., Wang, X., Zhang, Y., Cao, L. & Fox, A. D. Drivers of waterbird communities and their declines on Yangtze River floodplain lakes. Biol. Conserv. 218, 240–246 (2018).

    Article 

    Google Scholar
     

  • Lehikoinen, A., Rintala, J., Lammi, E. & Pöysä, H. Habitat-specific population trajectories in boreal waterbirds: alarming trends and bioindicators for wetlands. Animal Conserv. 19, 88–95 (2016).

    Article 

    Google Scholar
     

  • Boyd, C. et al. Spatial scale and the conservation of threatened species. Conserv. Lett. 1, 37–43 (2008).

    Article 

    Google Scholar
     

  • Schleicher, J. et al. Protecting half of the planet could directly affect over one billion people. Nat. Sustain. 2, 1094–1096 (2019).

    Article 

    Google Scholar
     

  • Wauchope, H. et al. Quantifying the impact of protected areas on near-global waterbird population trends, a pre-analysis plan. Preprint at https://doi.org/10.7287/peerj.preprints.27741v2 (2019).

  • Nosek, B. A., Ebersole, C. R., DeHaven, A. C. & Mellor, D. T. The preregistration revolution. Proc. Natl Acad. Sci. USA 115, 2600–2606 (2018).

    CAS 
    Article 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • QGIS Geographic Information System (QGIS, 2021).

  • Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

  • The World Database on Protected Areas (WDPA)/The Global Database on Protected Areas Management Effectiveness (GD-PAME) www.protectedplanet.net (UNEP-WCMC and IUCN, 2019).

  • Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG) (NOAA, 2017).

  • Coetzer, K. L., Witkowski, E. T. F. & Erasmus, B. F. N. Reviewing Biosphere Reserves globally: effective conservation action or bureaucratic label? Biol. Rev. 89, 82–104 (2014).

    Article 

    Google Scholar
     

  • Ament, J. M. & Cumming, G. S. Scale dependency in effectiveness, isolation, and social-ecological spillover of protected areas. Conserv. Biol. 30, 846–855 (2016).

    Article 

    Google Scholar
     

  • Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).

    Article 

    Google Scholar
     

  • Salmerón Gómez, R., García, Pérez, J., López Martín, M. D. M. & García, C. G. Collinearity diagnostic applied in ridge estimation through the variance inflation factor. J. Appl. Stat. 43, 1831–1849 (2016).

    MathSciNet 
    Article 

    Google Scholar
     

  • Gu, X. S. & Rosenbaum, P. R. Comparison of multivariate matching methods: structures, distances, and algorithms. J. Comput. Graph. Stat. 2, 405–420 (1993).


    Google Scholar
     

  • Stuart, E. A. Matching methods for causal inference: a review and a look forward. Stat. Sci. 25, 1–21 (2010).

    MathSciNet 
    Article 

    Google Scholar
     

  • King, G. & Nielsen, R. Why propensity scores should not be used for matching. Pol. Anal. 27, 435–454 (2019).

    Article 

    Google Scholar
     

  • Rosenbaum, P. R. DOS: design of observational studies. https://cran.r-project.org/web/packages/DOS/index.html (2018).

  • Linden, A. A matching framework to improve causal inference in interrupted time-series analysis. J. Eval. Clin. Pract. 24, 408–415 (2018).

    Article 

    Google Scholar
     

  • Simmons, B. I., Hoeppke, C. & Sutherland, W. J. Beware greedy algorithms. J. Anim. Ecol. 88, 804–807 (2019).

    Article 

    Google Scholar
     

  • Austin, P. C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 28, 3083–3107 (2009).

    MathSciNet 
    Article 

    Google Scholar
     

  • Rubin, D. B. Using propensity scores to help design observational studies: application to the tobacco litigation. Health Serv. Outcomes Res. Methodol. 2, 169–188 (2001).

    Article 

    Google Scholar
     

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).

  • Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. https://cran.r-project.org/web/packages/DHARMa/index.html (2021).

  • Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).


    Google Scholar
     

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48 (2015).

    Article 

    Google Scholar
     

  • Christensen, R. Ordinal–regression models for ordinal data. https://cran.r-project.org/web/packages/ordinal/index.html (2019).

  • Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Op. Source Softw. 3, 772 (2018).

    Article 

    Google Scholar
     

  • McKay, M. D., Beckman, R. J. & Conover, W. J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979).

    MathSciNet 

    Google Scholar
     

  • Carnell, R. lhs: latin hypercube samples. https://cran.r-project.org/web/packages/lhs/index.html (2020).

  • Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article 

    Google Scholar
     

  • Lu, C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 9, 181–192 (2017).

    Article 

    Google Scholar
     

  • Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    Article 

    Google Scholar
     

  • Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

    Article 

    Google Scholar
     

  • Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Sci. Data 4, 17001 (2017).

    Article 

    Google Scholar
     

  • Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Sandvik, B. World Borders Dataset. Thematic Mapping http://thematicmapping.org/downloads/world_borders.php (2009).

  • BirdLife International. Species Distribution Data Download http://www.birdlife.org/datazone/info/spcdownload (accessed 25 February 2020).

  • Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    Article 

    Google Scholar
     

  • WWF International. Management Effectiveness Tracking Tool https://wwfeu.awsassets.panda.org/downloads/mett2_final_version_july_2007.pdf (2007).

  • send message
    Hello,
    Iam Guest Posting Services
    I Have 2000 sites
    Status : Indexed All
    Good DA : 20-60
    Different Niche | Category
    Drip Feed Allowed
    I can instant publish
    ASAP


    My Services :

    1. I will do your orders maximum of 1x24 hours, if at the time I'm online, I will do a maximum of 1 hour and the process is
    completed.
    2. If any of your orders are not completed a maximum of 1x24 hours, you do not have to pay me, or free.
    3. For the weekend, I usually online, that weekend when I'm not online, it means I'm working Monday.
    4. For the payment, maximum payed one day after published live link.
    5. Payment via PayPal account.

    If you interesting, please reply

    Thank You

    Regards,

    IWAN